
Theor Chim Acta (1988) 73:459-465 

�9 Springer-Vedag 1988 

Application of 2-point Pad~ approximants to the ground 
state of the 2-dimensional hydrogen atom in an external 
magnetic field* 

Barry G. Adams 

Department of Computer Science, York University, North York, Ontario M3J 1P3, Canada 

(Received April 23/Accepted May 22, 1987) 

The 2-dimensional hydrogen atom in an external field Ar 2 is important in 
certain problems of solid-state physics. The exact results for the ground state 
are obtained from the numerical solution of the radial Schr6dinger equation 
and are compared with various 2-point Pad6 approximants. Terms to order 
A 4 in the low-field RS expansion are combined with 5 terms in the high-field 
expansion in order to obtain the Pad6 approximants. The results indicate that 
the best approximants have relative errors in the range 10 s to 10 5 throughout 
the interval A = 0 �9 �9 �9 4. 
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1. Introduction 

The 2-dimensional hydrogen atom in a strong magnetic field is of interest in 
quantum chemistry and solid-state physics. In the latter context it is a model for 
the study of shallow donor levels for semiconductor impurities near the center 
of a well. The physics of the problem is discussed in a paper by MacDonald and 
Ritchie [ 1 ]. 

The low-field RS perturbation expansion has recently been obtained by (~i~ek 
and Vinette [2] using symbolic computation and the so(2,1) Lie algebraic 
approach. The advantage of the algebraic approach to perturbation theory is well 
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known [3-7]. The difficulty of the continuum states of the hydrogen atom is 
circumvented and the low-field perturbation coefficients can be obtained to high 
order using only finite summations rather than the complicated integrations 
involved in the conventional approach. Thus, MacDonald and Ritchie in their 
comprehensive study [1] were only able to obtain the low-field expansion to 
order y2 in the magnetic field strength 3'. 

On the other hand, the high-field expansion must be treated by conventional 
perturbation theory since the unperturbed states are harmonic oscillator states 
which interact with an infinite number of excited states. Thus, the perturbation 
coefficients are expressed as infinite sums over the so-called Landau levels. It is 
rather paradoxical that MacDonald and Ritchie were able to obtain coefficients 
to fourth order in the perturbation theory for the high-field limit through a 
complex extrapolation scheme for the slowly convergent infinite sums, but they 
were only able to obtain one term beyond the linear field term for the low-field 
expansion using conventional perturbation theory. This underlines the difficulty 
in applying high-order perturbation theory when continuum states are involved 
and points to the power of the so(2, 1) algebraic methods. 

In the present paper we first discuss the numerical solution of the radial Schr6din- 
ger equation. This gives exact results for the ground state energy which are used 
to assess the accuracy of the 2-point Pad6 approximants. Then the low and 
high-field expansions are discussed and the results for the ground state are 
presented. These expansions have also been extended to several excited states 
and a more detailed analysis of the 2-point Pad6 approximants for excited states 
will be presented in a forthcoming paper. 

Finally a brief discussion of 2-point Pad6 approximants is presented and a 
comparison with the exact numerical results is given for several approximants 
differing in how much information from the low-field expansion is used. In each 
case the complete information from the high-field expansion is used. It is clear 
from the results presented that the 2-point Pad6 approximants provide high 
accuracy over a wide range of effective field strengths. 

2. Numerical solution of the Schr6dinger equation 

In order to obtain the Schr6dinger equation for an N-dimensional hydrogen 
atom it is necessary to use the following expressions for the square of the 
momentum and radial momentum [6, 8, 9]. 

p 2 = p  ~+ ~51 [(N-I~N-3)q_L2 ] (l) 

0 2 N - 1  0 ( N - 1 ) ( N - 3 )  
P ~ =  Or 2 r Or 4r  2 (2) 

where N is the dimension and the eigenvalues of L 2 for N->2  are l ( l +  N - 2 ) .  
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The N = 2 case with an r 2 perturbation and a magnetic field perpendicular to 
the x-y plane gives the Schr6dinger equation 

- t- r2-E 0(r, ~b)=0 (3) 
p - 7 0 6  r 

where y is the effective magnetic field strength. For solutions of  the form 
0n, m(r, ~b)= e~m6R,,m(r) appropriate  in the ]ow-field case we obtain the radial 
equation 

Pr ~r 2 \ 
4 1 2 ) + ~ +  y2r2 

8 En,mjen, m(r ) 0 ( 4 )  

where /=lml, m is the magnetic quantum number, n = l , 2 , 3 , . . . a n d  l =  
0, 1 , . . . ,  n -  1 as usual. Here we have absorbed the linear field term my~2 into 
the energy eigenvalue. 

Thus, we obtain an equation suitable for numerical integration 

I l d 2 1 d 1 2 1 -  1 
2dr 2 2r dr4-2r~-r +Ar2-E"'m Rn,m(r) = 0  ( 5 )  

where a = T2/8. Note that we are using atomic units rather than Rydbergs for 
the energy scale. 

We have integrated this equation numerically by converting it into a system of 
two first order differential equations. For the ground state the boundary conditions 
are R(0) = 1, R'(0) = - 2 ,  R(oo) = 0. The IMSL routine DVERK [10] was used to 
integrate outwards. This routine is a variable step Runge-Kut ta-Verner  fifth and 
sixth order method with prescribed error tolerance developed by Hull et al. [11]. 
Shanada and Tanaka [12] have also considered the numerical integration of Eq. 
(5) although no values of  the energy were reported. 

Since trial values of  the energy eigenvalue produce solutions which ultimately 
diverge to • the integration was performed for each value of a until a narrow 
eigenvalue interval was obtained such that the solution diverged to +0o at one 
end and -00 at the other. It was possible to obtain eigenvalues having from 6 to 
10 significant figures throughout the range a = 0 �9 �9 �9 4. The results are given in 
the first column Table 1 for selected values of k. 

3. The low-field expansion 

The low-field expansion for the eigenvalues of  Eq. (5) has the form 

0 /'/'/ co E '=E, ,+~y+y~ 12(i)li -~ n,,,~ (6) n, rrl �9 

It is more convenient to use the perturbation parameter  z = yl/2 so that (dropping 
the subscripts n, l, m) 

o o  

E(z) = Y~ ciz' (7) 
i = 0  
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where the non-zero coefficients are given by 

Co---�89189 2 (8) 

c2 = m/2  (9) 

_ ~(i)mi (10) C4i - -  ~ n , i /  o 

As mentioned in the introduction the results in Eq. (10) for i > 1 would be virtually 
impossible to obtain using conventional perturbation theory due to the presence 
of continuum states. However, the algebraic approach, which removes the con- 
tinuum by a scaling transformation, gives them as finite sums in terms of the 
simple matrix elements of the generator T3 of the so(2, 1) Lie algebra. The exact 
rational results for the coefficients c4i have been obtained from this formalism 
by Ci~ek and Vinette [2] using the Maple symbolic manipulation language. For 
the ground state which we are considering the energy is given by (n = 1, 1 = 0) 

E - 2 + ~  4 159 17 967 63z12_ 15 522 195 6 4 2 1 6 +  . . . (11) 
= 8z - 1 - - ~  ~2zS+65 536 16 777 216 

where 8 = �89 

4. The high-field expansion 

In the high-field limit the Coulomb term in Eq. (3) is the perturbation and the 
unperturbed problem is just the 2-dimensional harmonic oscillator. Thus, the 
high-field expansion of the energy eigenvalues has the form 

2,2 " _ .  
E N ,  M = E 

.= 1 

where N, M = 0, 1, 2 , . . .  and m = N -  M is the eigenvalue of the z component 
Lz of the angular momentum. The harmonic oscillator quantum numbers N and 
M are also called the Landau level numbers. 

For the ground state (N = M = 0) we obtain the perturbation expansion of the 
f o r m  

e = z Z ( d o  + dlz -1 + d2z-2+ d 3 z - 3 - ~  d 4  z - 4 ' ' } -  �9 �9 �9 ) 

where the following results are known 

do =1 

d,=t~(-1) 

d2 = ]32(-0.440 101 489 993 231) 

d3 =/33(-0.233 116 7) 

d4 =/34(-0.072 674 51) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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and fl = ( 7 r / 2 )  1/2. The coefficients do and d I a r e  exact and the others are accurate 
to the number of significant figures given. To obtain these results conventional 
perturbation theory must be used. The matrix elements of the 1/r perturbation 
can be expressed in closed form in terms of the 3F2 hypergeometric function 
which reduces to a polynomial in all eases [2, 13]. However, the ground state 
level interacts with an infinite number of  excited levels so the coefficients d~, 
i = 2, 3 , . . . ,  are given in general by slowly convergent infinite summations over 
the Landau levels. Thus, an extrapolation scheme for the partial sums is needed 
to obtain accurate values for the coefficients. We have used a Neville polynomial 
interpolation scheme [14] to fit several partial sums and extrapolate the results 
to the infinite summation limit. 

5. 2-Point Pad~ approximants 

The usual approach to obtaining higher accuracy for the low-field expansion in 
Eq. (11) over a range of z values is to use the 1-point Pad~ approximants [15]. 
However, the range can be significantly extended using information from the 
high-field expansion and 2-point approximants. Thus, noting the z 2 leading 
behavior (linearity in the magnetic field strength) fo the expansion in Eq. (13) 
we can consider the [K +2/K] approximants for the form 

r .l/r 1 RK(z )=  ~ p,z' ~ mz ~ (19) 
L i=0 . . J / L j = O  J 

-1 / r  ,<: 7 
Z 2 Z - i  = / Z qK-J z-j (20) J k i=o A I L j = O  

where the first expression is appropriate for the low-field expansion and the latter 
is appropriate for the high-field expansion. The usual normalization condition 
qo = 1 is assumed. 

Except for a re-ordering of the coefficients Pi and qj and the use of 1/z instead 
of z as the variable, Eq. (20) has an identical form to Eq. (19). Thus, the fitting 
of Eq. (11) to Eq. (19) is formally the same as the fitting of Eq. (13) to Eq. (20). 
In either case we can obtain a linear system of equations which can be solved 
for the coefficients qj [2, 16]. The remaining equations give linear expressions for 
the coefficients pi. We can take some equations from the low-field group and the 
remaining ones from the high-field group to obtain a variety of 2-point 
approximants. There are usually several choices for a given order K depending 
on how the equations chosen from each group are combined. In our study of 
the ground state we shall use all available information from the high-field 
expansion in Eq. (13) combined with various orders of the low-field expansion 
in Eq. (11). 

6. Results and discussion 

The results for the ground state for several 2-point Pad6 approximants are given 
in Table 1. The first column gives selected values of  the perturbation parameter 
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Table 1. Comparison of selected 2-point Pad6 approximants with the exact numerical results for the 
ground state of the hydrogen atom in a Ar 2 external magnetic field. The exact results from numerical 
integration are shown in column 1 and the approximants shown use all information in Eq. (13) for 
the high-field expansion. The order 5 approximant in column 3 is essentially the result of MacDonald 
and Ritchie [1], using low-field coefficients in Eq. (11) to order A. The range of A considered is 
equivalent to the range considered by these authors in terms of the parameter y '=  3'/(1 + 3'). The 
final three approximants use low-field coefficients to orders A 2, A 3 and A n, respectively. Beneath each 
energy value is the relative error compared to the exact result using the notation a (b) to denote a • 10 b 

A Exact [7/5] [9/7] [10/8] [11/9] 
results 

0.1 -1.963842 -1.964258 -1.963520 -1.963837 -1.963842 
-2.1 (-4) 1.6 (-4) 2.5 (-6) -1.0 (-8) 

0.2 -1.929807 -1.930819 -1.929310 -1.929791 -1.929809 
-5.2 (-4) 2.6 (-4) 8.3 (-6) -1.0 (-6) 

0.3 -1.897379 -1.898977 -1.896781 -1.897352 -1.897384 
-8.4 (-4) 3.2 (-4) 1.4 (-5) -2.6 (-6) 

0.4 -1.866249 -1.868393 -1.865589 -1.866214 -1.866257 
-1.1 (-3) 3.5 (-4) 1.9 (-5) -4.3 (-6) 

0.5 -1.836207 -1.838855 -1.835511 -1.836169 -1.836220 
-1.4 (-3) 3.8 (-4) 2.1 (-5) -7.1 (-6) 

0.6 -1.807104 -1.810212 -1.806385 -1.807064 -1.807120 
-1.7 (-3) 4.0 (-4) 2.2 (-5) -8.9 (-6) 

0.7 -1.778822 -1.782353 -1.778092 -1.778784 -1.778842 
-2.0 (-3) 4.1 (-4) 2.1 (-5) -1.1 (-5) 

0.8 -1.751273 -1.755190 -1.750537 -1.751237 -1.751296 
-2.2 (-3) 4.2 (-4) 2.1 (-5) -1.3 (-5) 

0.9 - 1.724381 - 1.728656 - 1.723645 - 1.724351 - 1.724407 
-2.5 (-3) 4.3 (-4) 1.7 (-5) -1.5 (-5) 

1.0 -1.69809 -1.70269 -1.697351 -1.69806 -1.69812 
-2.7 (-3) 4.4 (-4) 1.8 (-5) -1.8 (-5) 

2.0 -1.45959 -1.46648 -1.45895 -1.45967 -1.45964 
-4.7 (-3) 4.4 (-4) -5.5 (-5) -3.4 (-5) 

4.0 -1.06155 -1.07050 -1.06109 -1.06185 -1.06162 
-8.4 (-3) 4.3 (-4) -2.8 (-4) -6.6 (-5) 

A i n t r o d u c e d  in Eq.  (5) w h i c h  is r e l a t ed  to z by  A = z4/8. T h e  s e c o n d  c o l u m n  

gives  t he  e x a c t  resul ts  f r o m  the  n u m e r i c a l  i n t e g r a t i o n  o f  Eq.  (5). T h e  r e m a i n i n g  

c o l u m n s  give the  resul t s  fo r  f o u r  a p p r o x i m a n t s  o f  o rde r s  K = 5, 7, 8, 9, r espec-  

t ively ,  c h o s e n  to s h o w  h o w  the  a c c u r a c y  i m p r o v e s  as m o r e  coef f ic ien ts  f r o m  the  

low-f ie ld  e x p a n s i o n  are  used .  

T h e  o r d e r  5 a p p r o x i m a n t  in  c o l u m n  3 is e s sen t i a l ly  o n e  o f  the  resul t s  o f  M a c -  

D o n a l d  a n d  R i t ch i e  [2] w h i c h  uses  all  i n f o r m a t i o n  f r o m  the  h igh- f i e ld  e x p a n s i o n  

in Eqs .  (13-18)  bu t  o n l y  coef f ic ien ts  to first o r d e r  in h (Co . . . . .  c7) in Eqs .  (7-10) .  

T h e s e  a u t h o r s  p r o v i d e  e x t e n s i v e  resul ts  fo r  t he  g r o u n d  s ta te  a n d  severa l  exc i t ed  

states,  c o m p a r i n g  t h e m  wi th  e x p e r i m e n t  r a the r  t h a n  wi th  exac t  n u m e r i c a l  resul ts .  

T h e  r e m a i n i n g  a p p r o x i m a n t s  w h i c h  we  h a v e  c a l c u l a t e d  a lso  use  al l  h igh- f i e ld  

i n f o r m a t i o n .  T h e  o r d e r  7 a p p r o x i m a n t  in c o l u m n  4 uses  low-f ie ld  coef f ic ien ts  to 

s e c o n d  o r d e r  in h (Co . . . .  , c8), the  o r d e r  8 a p p r o x i m a n t  uses  low-f ie ld  coeff ic ients  
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to third order  in h (Co, . . . ,  c~2) and the order 9 approximant uses low-field 
coefficients to fourth order in h (Co, . . . ,  c16). The relative error of each 
approximant compared to the exact result in column 2 is given beneath each 
energy value using the notation a(b) to denote a x l0 b. 

It is clear from the results for a given value of A that the accuracy increases by 
approximately one order of magnitude throughout the range A = 0 to 0.6 as more 
low-field coefficients are used. Somewhat smaller increases are obtained for h = 0.7 
to 4. The [ 11/9] approximant is consistently two orders of magnitude better than 
the [7/5] approximant. The best results, for the [11/9] approximant, indicate 
that high accuracy in the range 10 8 to 10 -5 can be obtained over a wide range 
of h values using 2-point Pad6 approximants. 

It is also interesting to compare the 2-point results with the 1-point results using 
only the low-field expansion and Eq. (19) with K + 2  replaced by M (it is not 
possible to obtain [K + 2 / K ]  approximants using only the low-field expansion). 
The best result is the [8/8] approximant. It has a relative error of -2.5 ( -6 )  at 
h =0.1, increasing to -6 .4  ( -3 )  at h = 1 and to -2 .0  ( -1 )  at A =4.  The low-field 
expansion itself (the [16/0] approximant) has a relative error of  -1.5 ( -5 )  at 
h =0.1 which increases rapidly to -4.3 ( -1 )  at h = 1 and to -221 (0) at h =4.  

In conclusion it is apparent that if information is available at both the low and 
high-field limits of a perturbation parameter A then 2-point Pad6 approximants 
can provide high accuracy eigenvalues over a wide range of the perturbation 
parameter compared to the 1-point approximants. 
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